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Abstract

Vision Language Models (VLMs) like GPT-4v[1] have demonstrated re-
markable capabilities but struggle with visual mathematical reasoning tasks.
These tasks require numerical precision, multi-step logic, and accurate in-
terpretation of visual elements like charts and diagrams. This thesis in-
vestigates the potential of Group Relative Policy Optimization (GRPO),
a reinforcement learning technique, to enhance these specific capabilities in
VLMs. We finetuned the Qwen2VL-7B model using GRPO with reward sig-
nals based on answer accuracy and response formatting. The study also ex-
plored the impact of GRPO by comparing full model finetuning against sce-
narios with selectively frozen vision or language components. Our findings
indicate that GRPO finetuning yields observable improvements in mathe-
matical reasoning accuracy compared to the baseline model. Notably, fine-
tuning the complete model produced better performance than freezing the
vision or language components, suggesting potential benefits to adapting
both modalities. Additionally, we conducted a qualitative analysis that re-
vealed persistent error types in evaluation. While GRPO clearly enhances
visual–mathematical reasoning in VLMs, it does not solve every problem.
Gaps remain around fine-grained graph interpretation and formula applica-
tion. Future work should explore more sophisticated RL strategies, from
carefully tuned reward functions to innovative model architectures.
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Lay Summary

Today’s AI models excel at understanding text and images—but they often
stumble when asked to solve math problems shown in pictures, like inter-
preting a complex chart or performing step-by-step calculations from a dia-
gram. This thesis examines Group Relative Policy Optimization (GRPO),
a reinforcement-learning method that “rewards” the model for correct, well-
formatted answers. By fine-tuning a vision-language model with GRPO,
we boosted its accuracy on multi-step visual math tasks. Our experiments
reveal that adapting both the vision and language components together de-
livers the greatest gains, although challenges remain in reading fine graph
details and applying formulas exactly. These findings set the stage for future
improvements to VLMs.

iv



Preface

This work was conducted with the Deep Structured Learning Lab at UBC
under the guidance of Renjie Liao. I was responsible for designing and run-
ning experiments, reviewing and presenting relevant literature, and compil-
ing the results. I extensively consulted with Muchen Li and Tanzila Rahman,
whose suggestions, insights, and expertise helped guide the project.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Lay Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Introduction to VLMs . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Foundational VLM Architectures and Advancements . . . . 3
2.3 VLM Datasets for Reasoning Tasks . . . . . . . . . . . . . . 4
2.4 Fine-tuning and Alignment Strategies for VLMs . . . . . . . 5

2.4.1 Supervised Finetuning . . . . . . . . . . . . . . . . . 5
2.4.2 Alignment . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5 Reinforcement Learning for VLM Alignment And Tuning . . 5
2.5.1 RL for transformer based models . . . . . . . . . . . 6
2.5.2 RL from Human Feedback . . . . . . . . . . . . . . . 6

2.6 Group Relative Policy Optimization (GRPO) . . . . . . . . . 7

3 Experimental Setup: GRPO Finetuning Trials for Math
Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Base Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

vi



Table of Contents

3.3 Finetuning Procedures and Hardware . . . . . . . . . . . . . 9
3.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . 9

3.4.1 Reward Functions . . . . . . . . . . . . . . . . . . . . 10

4 Results and Findings . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.1 Failure Cases and Trends in MathVista TestMini Re-
sponses . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 20

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Appendices

A Additional Test Results and Example Responses . . . . . . 25
A.1 Qwen2VL-2B Test . . . . . . . . . . . . . . . . . . . . . . . . 25
A.2 Geometry Response Example . . . . . . . . . . . . . . . . . . 25
A.3 Physics Response Example . . . . . . . . . . . . . . . . . . . 26

vii



List of Figures

4.1 GRPO Benchmark Accuracy Evaluation . . . . . . . . . . . . 11
4.2 GRPO Training Accuracy Reward . . . . . . . . . . . . . . . 12
4.3 GRPO Training Format Reward . . . . . . . . . . . . . . . . 12
4.4 GRPO Training Total Reward . . . . . . . . . . . . . . . . . . 13
4.5 GRPO Training Completion Length . . . . . . . . . . . . . . 13
4.6 Example Irrelevant Question . . . . . . . . . . . . . . . . . . 14
4.7 Chart Question Example . . . . . . . . . . . . . . . . . . . . . 15
4.8 Stem Leaf Plot Image Example . . . . . . . . . . . . . . . . . 15
4.9 Unit Blocks Image Example . . . . . . . . . . . . . . . . . . . 16
4.10 Measuring Tool Image Example . . . . . . . . . . . . . . . . . 16
4.11 Physics Image Example . . . . . . . . . . . . . . . . . . . . . 17
4.12 Geometry Image Example . . . . . . . . . . . . . . . . . . . . 17
4.13 Precision Error Example . . . . . . . . . . . . . . . . . . . . . 18
4.14 Reasoning Disconnect Example . . . . . . . . . . . . . . . . . 19

A.1 Qwen2VL-2B Accuracy Reward . . . . . . . . . . . . . . . . . 25
A.2 Geometry Image Example Full . . . . . . . . . . . . . . . . . 26
A.3 Physics Image Example Full . . . . . . . . . . . . . . . . . . . 27

viii



Acknowledgements

I must express my gratitude to Muchen Li, Tanzila Rahman, and Renjie
Liao for their direct help with this project. They helped me tremendously
and were paramount in my learning. Additionally, I would like to extend my
thanks to the rest of the Deep Structured Learning lab. I attended various
reading groups and talks in which I gained exposure to new research, ideas,
and concepts.

ix



Chapter 1

Introduction

Recent advances in transformer-based Large Language Models (LLMs) have
been a significant development in the application of AI to many new prob-
lems. Many of the problems humans interact with are inherently multi-
modal as they require vision such as geometric reasoning, counting, and
physics. This signifies that language capabilities alone are not adequate to
solve a variety of fundamental problems. Solving these problems is the goal
of Vision Language Models (VLMs)

Modern Vision Language Models are typically large transformer-based mod-
els. They are able to complete a variety of tasks, including captioning,
describing images, and Visual Question Answering (VQA). These models
perform very well on simple problems that do not require complex or logical
reasoning[2][3]. There is a significant gap in the capabilities for these more
challenging problems that require vision. These visual reasoning tasks go
beyond object detection and require nuanced image understanding in con-
text to language and domain-specific contexts. For example, a geometry
question that requires the Pythagorean theorem requires not only recogniz-
ing the need to use the theorem but also how to apply it to the specific
image.

Visual mathematical reasoning presents a unique set of challenges, as it
requires precise perception of fine-grained detail, understanding of language
and logic, symbolic reasoning, and translating between visual and linguistic
knowledge

1.1 Problem Statement

Modern vision language models are far from perfect for mathematical rea-
soning tasks [2]. Common failure modes of these models include poor multi-
step reasoning, numerical precision, and incorrectly applying techniques or
strategies. This thesis addresses the problem of enhancing the mathemati-
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1.2. Contribution

cal reasoning capabilities of VLMs by exploring the efficacy of Group Rel-
ative Policy Optimization (GRPO)[4], a reinforcement learning technique,
to specifically improve numerical accuracy in visual mathematical problem-
solving.

1.2 Contribution

This paper provides a qualitative evaluation of GRPO’s improvements to
mathematical reasoning in VLMs and examines some of the architectural
effects of GRPO through parameter freezing.
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Chapter 2

Literature Review

2.1 Introduction to VLMs

VLMs have rapidly evolved over recent years. The advent of the trans-
former architecture has been a significant part of these changes[5]. Much
work has been done exploring how visual information can be effectively in-
tegrated into the Large Language Models (LLMs) of today[6][7][8]. Many
techniques have been employed to improve these models for human align-
ment and domain expertise. This chapter reviews the progression of VLMs,
highlighting impactful literature pertinent to understanding their current
state and providing context for the contributions made in this thesis. We
will delve into the challenges of visual reasoning, with a specific focus on
mathematical reasoning and the datasets used for evaluation. Following
this, a brief overview of Supervised Fine-Tuning (SFT)[9] as a standard
adaptation method will be provided. Finally, we will discuss the evolution
of reinforcement learning techniques for model alignment, including Rein-
forcement Learning from Human Feedback (RLHF)[10] and Group Relative
Policy Optimization (GRPO), which is central to this work.

2.2 Foundational VLM Architectures and
Advancements

The introduction of the transformer and the related Vision Transformer
(ViT) allowed for high performance models with visual and textual informa-
tion being converted to the same intermediary representation as tokens[11].
Despite this, early attempts at vision language models struggled with align-
ing textual and visual information. This meant that models struggled to un-
derstand the relationship between text and images. Contrastive Language-
Image Pretraining (CLIP) was a significant milestone in this problem[12]. In
short, this allowed for a vision and text encoder with a shared understanding
of images and their associated words. This meant the representation for the

3



2.3. VLM Datasets for Reasoning Tasks

image of something would look similar to the words describing that image
via cosine similarity. Due to this, CLIP could solve classification problems
it wasn’t explicitly trained for by comparing its embeddings.

Papers like Bootstrap Language Image Pre-training (BLIP)[13] expanded on
the ideas introduced in CLIP allowing for captioning and image-text match-
ing tasks. Later models like LLaVA[6] and BLIP-2[14] used ViTs trained in
a similar fashion to CLIP in conjunction with LLMs with a projection layer
between. These models also incorporated multistage training strategies with
parameter freezing. These performed extremely well and allowed for gener-
alized visual question answering. Scaling this general architecture of inte-
grating a ViT with a large language model with more data and parameters
was done in subsequent papers[15][16] showing significant improvements.
Additionally, there has been work done on image preprocessing[15][7], in-
termediary vision-language layers[14][6], and even new positional encoding
schemes[8].

The current landscape of open source VLMs is dominated by the Vision
Encoder + Projection Layer + LLM architecture due to its effectiveness[8].
This modular design allows leveraging independently developed, powerful
unimodal models. Contrastive pre-training remains a cornerstone for learn-
ing robust visual representations. Furthermore, multi-stage training strate-
gies with parameter freezing are common.

2.3 VLM Datasets for Reasoning Tasks

The BLINK[3] and MMMU[17] datasets both showcase a large gap in the
capabilities of vision language models and humans in visual perception ca-
pabilities. In these datasets we see problems more complex than recogni-
tion, classification, captioning. These tasks require understanding of what
is happening in the image and how it relates to spatial relationships, causal
relationships, perspective, or domain-specific concepts like math or physics.
These tasks encompass a diverse range of problems and apply to many do-
mains.

Mathematical reasoning is a particularly challenging area for VLMs. Lead-
ing models struggle to understand complex figures, perform rigorous reason-
ing, and analyze spatial position [2][18]. Many questions that are straightfor-
ward for humans are difficult for VLMs to answer[3]. MathVision identified
that 42% and 32% of GPT-4V’s[1] errors in their dataset are from ”Reason-
ing” and ”Vision Recognition” respectively[2]. Performance on benchmarks
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2.4. Fine-tuning and Alignment Strategies for VLMs

like this may reveal gaps between current VLMs and the robust, precise
reasoning required for reliable mathematical problem-solving.

2.4 Fine-tuning and Alignment Strategies for
VLMs

The significant gaps observed between current VLM capabilities and the
requirements for robust mathematical reasoning, as highlighted by perfor-
mance on challenging benchmarks necessitate exploring advanced methods
beyond standard pre-training. Fine-tuning and alignment techniques play
a crucial role in adapting pre-trained models to specific downstream tasks
and desired behaviors, such as logical consistency, numerical accuracy, and
domain expertise.

2.4.1 Supervised Finetuning

Supervised fine tuning (SFT) is one of the most common techniques used to
improve task specific model performance. It involves adding an additional
training step to the model in which we train using a dataset that is repre-
sentative to the specific task we are aiming to improve. [9] Effective use of
SFT involves a robust dataset of task specific input-output pairs which may
not be available.

2.4.2 Alignment

Reinforcement Learning Human Feedback (RLHF) is a technique used for
aligning models to human based objectives that are harder to define in
a strict dataset[10]. Reinforcement learning techniques don’t necessarily
require a ground truth label but instead require a reward signal. RLHF
generates this reward from human responses to answers. Further specifics
of RLHF and reinforcement learning are discussed in Section 2.5

2.5 Reinforcement Learning for VLM Alignment
And Tuning

Reinforcement Learning (RL) is a powerful technique that can fine-tune
VLMs. It aims to align model behavior with complex objectives that may
be difficult to specify or optimize effectively using SFT alone [4]. RL allows
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2.5. Reinforcement Learning for VLM Alignment And Tuning

models to learn through optimizing a reward signal and as a result learn a
policy that maximizes expected cumulative reward.

2.5.1 RL for transformer based models

Applying RL to large transformer-based models required improvements to
Policy Gradient Methods. These are reinforcement learning algorithms that
allow the model policy to be updated by gradient ascent of the estimated
expected reward. Some key policy gradient techniques include:

• Trust Region Policy Optimization (TRPO): [19] introduced con-
straints for more stable learning compared to earlier policy gradient
techniques

• Proximal Policy Optimization (PPO): [20] simplified TRPO while
maintaining strong performance, becoming the standard algorithm for
RL-based fine-tuning of large language and vision-language models
due to its balance of sample efficiency, ease of implementation, and
stability

2.5.2 RL from Human Feedback

RLHF [10] is one of the most highly successful applications of RL in large
transformer-based models. This technique specifically aims to align mod-
els with human preferences and instructions. The typical RLHF process
involves:

1. SFT Pre-training: Training a base model using supervised fine-
tuning.

2. Reward Modeling: Training a separate model to predict human
preferences between pairs of model-generated outputs. Human labelers
rank different responses, and the reward model learns to assign higher
scores to preferred outputs.

3. RL Fine-tuning: Further tuning the model using an RL algorithm
(commonly PPO) where the reward signal is provided by the trained
reward model.

RLHF has proven effective in enhancing the helpfulness, instruction-following
capabilities, and safety of large models [10]

6



2.6. Group Relative Policy Optimization (GRPO)

2.6 Group Relative Policy Optimization (GRPO)

GRPO was introduced in DeepSeekMath in order to enhance mathematical
reasoning capabilities while also optimizing the memory usage of PPO[4].
In short the primary difference between the two techniques is PPO uses
a learned “value” function to estimate the advantage of a specific action
or output while GRPO does not do this explicitly. Instead GRPO gener-
ates multiple outputs and estimates the normalized advantage of each ac-
tion relative to group. The number of outputs is a hyperparameter called
num generations. The relative normalized advantage of an action Âi is sim-
ply: ri−mean(r)

std(r) . Where Âi is the advantage for an output oi and ri is the
reward for the ouput oi.

7



Chapter 3

Experimental Setup: GRPO
Finetuning Trials for Math
Reasoning

In this chapter we detail the experiments conducted to improve VLMs for
Math Reasoning.

3.1 Base Model

The VLM we chose as the basis of our experiments is Qwen2VL-7B[8].
Qwen2VL is part of the Qwen large model series developed by Alibaba
Cloud, specifically designed as a large vision-language model capable of han-
dling diverse multimodal tasks. We chose the 7 billion parameter variant
as initial tests showed the smaller variant Qwen2VL-2B, might lack the
capacity for logical reasoning involved in the target benchmarks[REFER
Appendix test]. In addition, larger models would require significantly more
computational resources.

3.2 Datasets

The selection of appropriate datasets are critical for finetuning and evaluat-
ing VLMs, especially for specialized tasks like visual mathematical reason-
ing. We utilized the following datasets tailored for mathematical reasoning:

• MathVista: [18] This dataset is a diverse collection of visual math-
ematical reasoning problems. It encompasses areas such as geometry,
statistical charts, general mathematics. It includes various image types
(diagrams, plots, natural images) and provides image-question-answer
triplets, often including reasoning steps. We utilized the testmini split
for training purposes and also as one of the evaluation sets.

8



3.3. Finetuning Procedures and Hardware

• MathVision: [2] This dataset, also known as MATH-V, provides
a collection of mathematical problems with visual contexts sourced
from math competitions. The questions span 16 disciplines and 5
difficulty levels. The dataset aims to provide a diverse and challenging
evaluation of mathematical reasoning against human performance. We
utilized the test and test-mini split for evaluation.

3.3 Finetuning Procedures and Hardware

The specific GRPO implementation we used was based on the R1-V[21]
implementation on GitHub. All models were trained using the following
parameters:

• num generations 4

• max prompt length 1024

• max completion length 1024

• per device train batch size 1

• gradient accumulation steps 2

• learning rate 1e-6

• warmup steps 50

The remaining parameters were kept to their default values and further de-
tails can be found in the appendix [CITE]. Multiple choice questions options
were included in the prompt question[CITE APPENDIX]. Training check-
points were saved at 700 and 1700 steps or 1.4 and 3.4 epochs respectively.
Typical training runs were conducted on a single NVIDIA A100 80GB GPU
taking up to 12 hours per run.

3.4 Experimental Design

In order to explore the effects of GRPO on the VLM architecture we evaluate
four models. The first is the baseline model. This is the performance of
Qwen2VL-7B without any modifications. After this, we evaluate the effects
of applying GRPO to the entire model. Next we examine the changes when
only the visual encoder portion of the model is left unfrozen. Finally, we
examine the converse situation in which the vision encoder is frozen.

9



3.4. Experimental Design

3.4.1 Reward Functions

We utilized two reward functions. The first was a format reward. This
reward returned a value of 1 if the response followed the format described
in DeepSeekMath[4]. In other words the response must use the tags ”think”
and ”answer” to format its response. Otherwise the format reward was 0.
This was done via Regex pattern matching.

Additionally, we incorporated an accuracy reward. When the model answer
is exactly the same as the correct answer it received an accuracy reward of
1 and otherwise received a 0.

10



Chapter 4

Results and Findings

4.1 Quantitative Results

Figure 4.1: Here is an evaluation of GRPO’s performance for MathVista
testmini (our finetuning set) and MathVision, our evaluation set

We see a notable improvement in test accuracy after incorporating GRPO for
math reasoning. On the MathVision test split we observe a 21.5% improve-
ment in accuracy relative to the baseline Qwen2VL-7B accuracy Figure 4.1.
There is a notable drop in training accuracy after incorporating parameter
freezing in both cases. The drop is more significant when the non-vision
portion of the model is frozen.

11



4.1. Quantitative Results

Figure 4.2: Here we have the training curves for the accuracy reward of each
model per step

Figure 4.3: Here we have the training curves for the format reward of each
model per step

12



4.2. Qualitative Results

Figure 4.4: Here we have the training curves for the total reward of each
model per step

Figure 4.5: Here we have the completion length of each model’s responses
per step

4.2 Qualitative Results

Response quality and answer trends are difficult to capture with numerical
analysis alone. Thus, we manually examined incorrect responses throughout

13



4.2. Qualitative Results

training to look for trends.

4.2.1 Failure Cases and Trends in MathVista TestMini
Responses

Irrelevant Questions

A significant portion of the testmini split of the MathVista dataset contain
irrelevant questions Figure 4.6. Specifically 51 instances or 5% of the dataset
contain questions asking the age of individuals. Although these questions
represent a challenging visual language problem to LLMs this question type
does not pertain to math reasoning. Given the limited context of many
of these questions, they involve identification and classification of people
without complex reasoning. The VLM often resorted to responding with
zero or mentioning not enough information was provided.

Figure 4.6: This image was provided with the question ”What is the age
gap between these two people in image?”. This question answer pair in
MathVista’s dataset does not reflect the target of problem of mathematical
reasoning

Reading Fine Details in Graphs

Many incorrect responses involved reading fine-grained details in graphs.
This was a commonly observed error type and showcases a possible area for
further improvement in VLMs.

14



4.2. Qualitative Results

Figure 4.7: This image was provided with the question ”Which year has the
least difference between the used and new cars?”. The answer is 2015 but
the VLM answered 2016

Stem and Leaf Plots

Stem and leaf plot problems appear difficult for the VLM. This may be due
to a lack of domain knowledge on how to read these specific charts. More
detailed analysis is required to confirm this.

Figure 4.8: This image was provided with the question ”The advertising
agency counted the number of billboards in each city in the state. How
many cities have fewer than 70 billboards? (Unit: cities)”. The answer is 9
but the VLM answers varied from 10-19

15



4.2. Qualitative Results

Counting Blocks

The VLM often failed to count unit blocks. Reading the thinking portion of
the response showed that many errors were due to misunderstanding what
each block represented, while other errors were from incorrectly counting
the number of blocks.

Figure 4.9: This image was provided with the question ”What number is
shown?”. The answer is 38 but the VLM answered 39

Reading Measuring Tools

Some questions involved reading measuring tools such as rulers, scales, or
scientific equipment. The VLM incorrectly read these tools. This was not
universally true for all such problems, but was nonetheless a common incor-
rect question type.

Figure 4.10: This image was provided with the question ”Move the ruler to
measure the length of the line to the nearest centimeter. The line is about
( ) centimeters long.” The answer is 9 but the VLM answered 7

Physics and Formulas

Incorrectly applying physics and math formulas is a common error the VLM
made. It would often mention valid techniques and strategies, yet apply

16



4.2. Qualitative Results

them incorrectly Appendix A.3.

Figure 4.11: This image was provided with the question ”Given Vs = 5V, R1

= 1kΩ, R2 = 2.2kΩ, R3 = 2.2kΩ, R4 = 1.5kΩ, and RL = 4.7kΩ. Determine
the voltage and current across RL. Answer in unit of V (3 sig.fig.)?”. The
answer is 1.06 but the VLM answered 3.4

Geometric Reasoning

Like in physics problems, the VLM failed to correctly apply relevant tech-
niques to solve the problem despite mentioning them in the reasoning re-
sponse Appendix A.2.

Figure 4.12: This image was provided with the question ”Find the size of
angle MBD in the figure below”. The answer is 72 but the VLM answered
23

17



4.2. Qualitative Results

Output Formatting/Precision

One occasional source of errors is precision errors. Specifically, an answer
may be correct, but the response provides more or fewer digits than re-
quested. This type of error represents a case where visual reasoning is not
the error but the instruction following is. Fortunately, these cases were rare.

Figure 4.13: This image was provided with the question ”Find out the
average of the bottom two countries?”. The answer is 51.04 but the VLM
answered 51.045

Reasoning Disconnect

A rare instance of errors is reasoning disconnect. In this case, the VLM
correctly identifies the answer while thinking but answers incorrectly. This
was exceptionally rare, but it is not clear why these errors are observed.

18



4.2. Qualitative Results

Figure 4.14: This image was provided with the question ”Look at the table.
Then answer the question. At a price of $790, is there a shortage or a
surplus?”. The answer is surplus but this was VLM’s full response: <think>
At a price of $790, the quantity demanded is 5,100 and the quantity supplied
is 14,700. Since the quantity demanded is less than the quantity supplied,
there is a surplus.</think> <answer>shortage</answer>

19



Chapter 5

Conclusion

5.1 Future work

There are several avenues for future research continuing this work. Ex-
ploring more sophisticated reward functions for GRPO that evaluate in-
termediate steps, rather than just final answer accuracy and format, could
potentially guide the model towards more coherent and correct problem-
solving processes. This could also help with reward scarcity. Investigating
the application of GRPO to larger, more capable base VLMs could also
yield further improvements. Additionally, curating more targeted finetun-
ing datasets that specifically address the common failure modes identified
could be beneficial. It could also be useful to examine other advanced RL
techniques like Direct Preference Optimization (DPO) within this specific
VLM context would also be valuable.

5.2 Limitations

This study has several limitations. The experiments were conducted using
a single base VLM (Qwen2VL-7B) and primarily one dataset (MathVista
testmini) for training, which may limit the generalizability of the findings.
The reward functions used were relatively simple, focusing on final answer
accuracy and format, potentially missing nuances in reasoning quality. The
scale of the experiments was also constrained by available computational
resources, limiting the number of training steps and hyperparameter explo-
ration.

5.3 Closing Remarks

Improving the mathematical reasoning capabilities of Vision Language Mod-
els is a significant challenge at the intersection of computer vision and nat-
ural language processing. This thesis demonstrated that GRPO is a viable
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5.3. Closing Remarks

pathway for improving VLM performance on visual mathematical tasks,
yielding measurable gains over baseline models. However, our qualitative
analysis highlights the complexity of these tasks. There are remaining gaps
in areas such as precise perception, robust multi-step reasoning, and re-
liable application of domain knowledge. Techniques like GRPO push the
boundaries, but it is clear that achieving human-level proficiency in visual
mathematical reasoning will likely require continued advancements in model
architectures, training methodologies, and reward engineering.
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Appendix A

Additional Test Results and
Example Responses

A.1 Qwen2VL-2B Test

Figure A.1: This is a training curve for an early experiment exploring
Qwen2VL-2B for math reasoning fine tuning via GRPO.

A.2 Geometry Response Example

Question: Find the size of angle MBD in the figure below
Solution: 72
Response: <think> The sum of the angles in a triangle is 90°.
- In triangle ACD, the angles are given as 56°, 78°, and angle ACD (which
we need to find).
- The angle at A is 78° and the angle at D is 56°, so angle ACD = 180° - 78°
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A.3. Physics Response Example

- 56° = 46°.
- Therefore, the measure of angle MBD is half of angle ACD, since M is the
midpoint of AD.
- So, angle MBD = 46° / 2 = 23°.
<answer>23°</answer>

Figure A.2: Geometry problem in MathVista Dataset

A.3 Physics Response Example

Question: Given Vs = 5V, R1 = 1kΩ, R2 = 2.2kΩ, R3 = 2.2kΩ, R4 = 1.5kΩ,
and RL = 4.7kΩ. Determine the voltage and current across RL. Answer in
unit of V (3 sig.fig.).
Solution: 1.06
Response: <think>First, we need to find the equivalent resistance of all the
resistors in parallel. Since R2 and R3 are both 2.2kΩ, they have the same
resistance and can be treated as a single resistor with a value of 1.1kΩ in
parallel with R1 and R4. The equivalent resistance of these two parallel
resistors is:

Req =
R1 ×R2

R1 +R2
=

1.8 kΩ× 1.8 kΩ

1.8 kΩ + 1.8 kΩ
= 0.9 kΩ

Finally, we can combine Req with RL in parallel to get the total equivalent
resistance of the circuit. The total resistance across the battery is:

Rtotal =
0.9 kΩ× 4.7 kΩ

0.9 kΩ + 4.7 kΩ
= 1.73 kΩ
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A.3. Physics Response Example

Now, we can use Ohm’s law to find the current and voltage across RL. The
voltage across RL is:

VL =
(Vs ∗RL)

Rtotal
=

(5V ∗ 4.7kΩ)
1.73kΩ

= 13.5V

And the current is:

IL = VL/RL = 13.5V/4.7kΩ = 2.86A

</think>
<answer>3.4V</answer>

Figure A.3: Physics problem in MathVista Dataset
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Appendix B

Full Parameter List and
Prompt List

B.1 Question Prompt

All questions from the dataset were formatted in the following way:

• ”{Question} Output the thinking process in <think> </think> and
final answer (number) in <answer> </answer> tags.”

Additionally, if the question is multiple choice the following text is also
appended:

• ” Choose from the following options ” + ” ”.join(x[”choices”])

Where x[choices] is the array containing the answer choices

B.2 Training Paramters and Meta Data

• attn implementation autoset: true

• name or path: "Qwen/Qwen2-VL-7B-Instruct"

• accelerator config:

– dispatch batches: null

– even batches: true

– gradient accumulation kwargs: null

– non blocking: false

– split batches: false
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B.2. Training Paramters and Meta Data

– use seedable sampler: true

• adafactor: false

• adam beta1: 0.9

• adam beta2: 0.999

• adam epsilon: 1× 10−8

• add cross attention: false

• architectures (1 collapsed):

• attention dropout: 0

• auto find batch size: false

• average tokens across devices: false

• bad words ids: null

• batch eval metrics: false

• begin suppress tokens: null

• beta: 0.04

• bf16: true

• bf16 full eval: false

• bos token id: 151,643

• chunk size feed forward: 0

• cross attention hidden size: null

• data seed: null

• dataloader drop last: false

• dataloader num workers: 0

• dataloader persistent workers: false

• dataloader pin memory: true

• dataloader prefetch factor: null

• ddp backend: null

• ddp broadcast buffers: null
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B.2. Training Paramters and Meta Data

• ddp bucket cap mb: null

• ddp find unused parameters: null

• ddp timeout: 1,800

• debug (0 collapsed):

• decoder start token id: null

• deepspeed: "./zero3.json"

• disable tqdm: false

• dispatch batches: null

• diversity penalty: 0

• do eval: false

• do predict: false

• do sample: false

• do train: false

• early stopping: false

• encoder no repeat ngram size: 0

• eos token id: 151,645

• eval accumulation steps: null

• eval delay: 0

• eval do concat batches: true

• eval on start: false

• eval steps: null

• eval strategy: "no"

• eval use gather object: false

• evaluation strategy: null

• exponential decay length penalty: null

• finetuning task: null

• forced bos token id: null
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B.2. Training Paramters and Meta Data

• forced eos token id: null

• fp16: false

• fp16 backend: "auto"

• fp16 full eval: false

• fp16 opt level: "O1"

• fsdp (0 collapsed):

• fsdp config:

– min num params: 0

– xla: false

– xla fsdp grad ckpt: false

– xla fsdp v2: false

• fsdp min num params: 0

• fsdp transformer layer cls to wrap: null

• full determinism: false

• gradient accumulation steps: 2

• gradient checkpointing: false

• gradient checkpointing kwargs: null

• greater is better: null

• group by length: false

• half precision backend: "auto"

• hidden act: "silu"

• hidden size: 3,584

• hub always push: false

• hub model id: null

• hub private repo: false

• hub strategy: "every save"

• hub token: "<HUB TOKEN>"
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B.2. Training Paramters and Meta Data

• id2label:

– 0: "LABEL 0"

– 1: "LABEL 1"

• ignore data skip: false

• image token id: 151,655

• include for metrics (0 collapsed):

• include inputs for metrics: false

• include num input tokens seen: false

• include tokens per second: false

• initializer range: 0.02

• intermediate size: 18,944

• is decoder: false

• is encoder decoder: false

• jit mode eval: false

• label names: null

• label smoothing factor: 0

• label2id:

– LABEL 0: 0

– LABEL 1: 1

• learning rate: 1× 10−6

• length column name: "length"

• length penalty: 1

• load best model at end: false

• local rank: 0

• log level: "passive"

• log level replica: "warning"

• log on each node: true
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B.2. Training Paramters and Meta Data

• logging dir: "/data/tayyibc/r1-v out/runs/Mar26 08-53-48 moss"

• logging first step: false

• logging nan inf filter: true

• logging steps: 1

• logging strategy: "steps"

• lr scheduler type: "linear"

• max completion length: 1,024

• max grad norm: 1

• max length: 20

• max position embeddings: 32,768

• max prompt length: 1,024

• max steps: 4,000

• max window layers: 28

• metric for best model: null

• min length: 0

• model init kwargs: null

• model type: "qwen2 vl"

• model/num parameters: 0

• mp parameters: ""

• neftune noise alpha: null

• no cuda: false

• no repeat ngram size: 0

• num attention heads: 28

• num beam groups: 1

• num beams: 1

• num generations: 4

• num hidden layers: 28
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B.2. Training Paramters and Meta Data

• num key value heads: 4

• num return sequences: 1

• num train epochs: 1

• optim: "adamw torch"

• optim args: null

• optim target modules: null

• output attentions: false

• output dir: "/data/tayyibc/r1-v out"

• output hidden states: false

• output scores: false

• overwrite output dir: false

• pad token id: null

• past index: -1

• per device eval batch size: 8

• per device train batch size: 1

• per gpu eval batch size: null

• per gpu train batch size: null

• prediction loss only: false

• prefix: null

• problem type: null

• push to hub: false

• push to hub model id: null

• push to hub organization: null

• push to hub token: "<PUSH TO HUB TOKEN>"

• ray scope: "last"

• remove invalid values: false

• remove unused columns: false
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B.2. Training Paramters and Meta Data

• repetition penalty: 1

• report to (1 collapsed):

• restore callback states from checkpoint: false

• resume from checkpoint: null

• return dict: true

• return dict in generate: false

• rms norm eps: 1× 10−6

• rope scaling:

– mrope section (3 collapsed):

– rope type: "default"

– type: "default"

• rope theta: 1,000,000

• run name: "Qwen2-VL-7B-GRPO-MathVista-5k"

• save on each node: false

• save only model: true

• save safetensors: true

• save steps: 100

• save strategy: "steps"

• save total limit: null

• seed: 42

• sep token id: null

• skip memory metrics: true

• sliding window: 32,768

• split batches: null

• suppress tokens: null

• task specific params: null

• temperature: 0.9
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B.2. Training Paramters and Meta Data

• tf legacy loss: false

• tf32: null

• tie encoder decoder: false

• tie word embeddings: false

• tokenizer class: null

• top k: 50

• top p: 1

• torch compile: false

• torch compile backend: null

• torch compile mode: null

• torch dtype: "float32"

• torch empty cache steps: null

• torchdynamo: null

• torchscript: false

• tpu metrics debug: false

• tpu num cores: null

• transformers version: "4.49.0.dev0"

• typical p: 1

• use bfloat16: false

• use cache: null

• use cpu: false

• use ipex: false

• use legacy prediction loop: false

• use liger kernel: false

• use mps device: false

• use sliding window: false

• use vllm: false
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B.2. Training Paramters and Meta Data

• video token id: 151,656

• vision config:

– attn implementation autoset: false

– name or path: ""

– add cross attention: false

– architectures: null

– bad words ids: null

– begin suppress tokens: null

– bos token id: null

– chunk size feed forward: 0

– cross attention hidden size: null

– decoder start token id: null

– depth: 32

– diversity penalty: 0

– do sample: false

– early stopping: false

– embed dim: 1,280

– encoder no repeat ngram size: 0

– eos token id: null

– exponential decay length penalty: null

– finetuning task: null

– forced bos token id: null

– forced eos token id: null

– hidden act: "quick gelu"

– hidden size: 3,584

– id2label:

∗ 0: "LABEL 0"
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B.2. Training Paramters and Meta Data

∗ 1: "LABEL 1"

– in channels: 3

– in chans: 3

– is decoder: false

– is encoder decoder: false

– label2id:

∗ LABEL 0: 0

∗ LABEL 1: 1

– length penalty: 1

– max length: 20

– min length: 0

– mlp ratio: 4

– model type: "qwen2 vl"

– no repeat ngram size: 0

– num beam groups: 1

– num beams: 1

– num heads: 16

– num return sequences: 1

– output attentions: false

– output hidden states: false

– output scores: false

– pad token id: null

– patch size: 14

– prefix: null

– problem type: null

– remove invalid values: false

– repetition penalty: 1
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B.2. Training Paramters and Meta Data

– return dict: true

– return dict in generate: false

– sep token id: null

– spatial merge size: 2

– spatial patch size: 14

– suppress tokens: null

– task specific params: null

– temperature: 1

– temporal patch size: 2

– tf legacy loss: false

– tie encoder decoder: false

– tie word embeddings: true

– tokenizer class: null

– top k: 50

– top p: 1

– torch dtype: "float32"

– torchscript: false

– typical p: 1

– use bfloat16: false

• vision end token id: 151,653

• vision start token id: 151,652

• vision token id: 151,654

• vllm device: "auto"

• vllm gpu memory utilization: 0.9

• vocab size: 152,064

• warmup ratio: 0

• warmup steps: 50
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B.2. Training Paramters and Meta Data

• weight decay: 0
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